Direct synthesis of high-density lead sulfide nanowires on metal thin films towards efficient infrared light conversion.
نویسندگان
چکیده
We report chemical-vapor-deposition (CVD) synthesis of high-density lead sulfide (PbS) nanowire arrays and nano pine trees directly on Ti thin films, and the fabrication of photovoltaic devices based upon the PbS nanowires. The as-grown nanowire arrays are largely vertically aligned to the substrates and are uniformly distributed over a relatively large area. Field effect transistors incorporating single PbS nanowires show p-type conduction and high mobilities. These catalytic metal thin films also serve as photocarrier collection electrodes and greatly facilitate device integration. For the first time, we have fabricated Schottky junction photovoltaic devices incorporating PbS nanowires, which demonstrate the capability of converting near-infrared light to electricity. The PbS nanowire devices are stable in air and their external quantum efficiency shows no significant decrease over a period of 3 months in air. We have also compared the photocurrent direction and quantum efficiencies of photovoltaic devices made with different metal electrodes, and the results are explained by band bending at the Schottky junction. Our research shows that PbS nanowires are promising building blocks for collecting near-infrared solar energy.
منابع مشابه
Design and fabrication of multilayer thin film coated hollow waveguides for enhanced infrared radiation delivery
Metal coated Hollow Glass Waveguides (HGWs) incorporating single dielectric thin films have been widely used for the low-loss transmission of infrared radiation in applications ranging from surgery to spectroscopy. While the incorporation of single dielectric film designs have traditionally been used in metal/dielectric coated HGWs, recent research has focused on the development of alternating ...
متن کاملDeposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides.
Metal sulfide dielectric thin films have been deposited using dynamic wet chemistry processing on silver coated hollow glass waveguides (HGWs). The sulfides used were cadmium sulfide (CdS) and lead sulfide (PbS); both films have excellent infrared transparency and high refractive index contrast. The thickness of these thin films can be tailored to minimize the attenuation of the HGW over specif...
متن کاملHigh Infrared Photoconductivity in Films of Arsenic-Sulfide-Encapsulated Lead-Sulfide Nanocrystals
Highly photoconductive thin films of inorganic-capped PbS nanocrystal quantum dots (QDs) are reported. Stable colloidal dispersions of (NH4)3AsS3-capped PbS QDs were processed by a conventional dip-coating technique into a thin homogeneous film of electronically coupled PbS QDs. Upon drying at 130 °C, (NH4)3AsS3 capping ligands were converted into a thin layer of As2S3, acting as an infrared-tr...
متن کاملSubstrate Effects on the Structural Properties of Thin Films of Lead Sulfide
Nanocrystalline PbS thin films are deposited on glass and alumina substratesthrough the chemical bath deposition technique by creating similar conditions, in orderto investigate the effects of the substrate. The structural and optical properties of PbSfilms are investigated by X-ray diffraction, scanning electron microscope, and UV–Vis.The structural analyses of the films indicate that they are...
متن کاملRealization of metal-insulator transition and oxidation in silver nanowire percolating networks by terahertz reflection spectroscopy.
Metal nanowires (NWs) enable versatile applications in printed electronics and optoelectronics by serving as thin and flexible transparent electrodes. The performance of metal NWs as thin electrodes is highly correlated to the connectivity of NW meshes. The percolation threshold of metal NW films corresponds to the minimum density of NWs to form the transparent, yet conductive metal NW networks...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 23 26 شماره
صفحات -
تاریخ انتشار 2012